手机

当前位置:查字典资讯网 > 考试 > 2016年高考数学备考:专项练习及答案(14)

2016年高考数学备考:专项练习及答案(14)

来自:查字典教育资讯网 2015-09-28

1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a=()

A.1 B.4 C.8 D.16

2.(2014辽宁,文8)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()

A.- B.-1 C.- D.-

3.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是()

A.- B.- C. D.

4.抛物线C的顶点为原点,焦点在x轴上,直线x-y=0与抛物线C交于A,B两点,若P(1,1)为线段AB的中点,则抛物线C的方程为()

A.y=2x2 B.y2=2x C.x2=2y D.y2=-2x

5.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上,且|AK|=|AF|,则AFK的面积为()

A.4 B.8 C.16 D.32

6.以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为 .

7.已知抛物线x2=2py(p为常数,p≠0)上不同两点A,B的横坐标恰好是关于x的方程x2+6x+4q=0(q为常数)的两个根,则直线AB的方程为 .

8.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB的中点为M(2,2),求ABF的面积.

9.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.

(1)求曲线C的方程;

(2)是否存在正数m,对于过点M(m,0),且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.

10.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()

A.相离 B.相交 C.相切 D.不确定

11.设x1,x2R,常数a>0,定义运算“*”,x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,则动点P(x,)的轨迹是()

A.圆 B.椭圆的一部分

C.双曲线的一部分 D.抛物线的一部分

12.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=()

A. B.3 C. D.2

13.过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为12,则p= .

14.(2014大纲全国,文22)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.

(1)求C的方程;

(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l'与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.

15.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,ADF为正三角形.

(1)求C的方程;

(2)若直线l1l,且l1和C有且只有一个公共点E,

证明直线AE过定点,并求出定点坐标;

ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

 

参考答案及解析:

1.C 解析:根据抛物线方程可得其焦点坐标为,双曲线的上焦点为(0,2),依题意则有=2,解得a=8.

2.C 解析:由已知,得准线方程为x=-2,

F的坐标为(2,0).

又A(-2,3),直线AF的斜率为k==-.故选C.

3.B 解析:抛物线方程可化为x2=-,其准线方程为y=.

设M(x0,y0),则由抛物线的定义,可知-y0=1y0=-.

4.B 解析:设A(x1,y1),B(x2,y2),抛物线方程为y2=2px,

则两式相减可得2p=×(y1+y2)=kAB×2=2,

即可得p=1,故抛物线C的方程为y2=2x.

5.B 解析:抛物线C:y2=8x的焦点为F(2,0),准线为x=-2,K(-2,0).

设A(x0,y0),过点A向准线作垂线AB垂足为B,则B(-2,y0).

AK|=|AF|,

又|AF|=|AB|=x0-(-2)=x0+2,

由|BK|2=|AK|2-|AB|2,

得=(x0+2)2,即8x0=(x0+2)2,

解得A(2,±4).

故AFK的面积为|KF|·|y0|

=×4×4=8.

6.x2+(y-4)2=64 解析:抛物线的焦点为F(0,4),准线为y=-4,

则圆心为(0,4),半径r=8.

故圆的方程为x2+(y-4)2=64.

7.3x+py+2q=0 解析:由题意知,直线AB与x轴不垂直.

设直线AB的方程为y=kx+m,与抛物线方程联立,得x2-2pkx-2pm=0,

此方程与x2+6x+4q=0同解,

则解得

故直线AB的方程为y=-x-,

即3x+py+2q=0.

8.解:由M(2,2)知,线段AB所在的直线的斜率存在,

设过点M的直线方程为y-2=k(x-2)(k≠0).

由消去y,

得k2x2+(-4k2+4k-4)x+4(k-1)2=0.

设A(x1,y1),B(x2,y2),

则x1+x2=,

x1x2=.

由题意知=2,

则=4,解得k=1,

于是直线方程为y=x,x1x2=0.

因为|AB|=|x1-x2|=4,

又焦点F(1,0)到直线y=x的距离d=,所以ABF的面积是×4=2.

9.解:(1)设P(x,y)是曲线C上任意一点,

则点P(x,y)满足-x=1(x>0),

化简得y2=4x(x>0).

(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).

设l的方程为x=ty+m.

由得y2-4ty-4m=0,

Δ=16(t2+m)>0,

于是

因为=(x1-1,y1),

=(x2-1,y2),

所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.

又<0,

所以x1x2-(x1+x2)+y1y2+1<0,③

因为x=,所以不等式可变形为

+y1y2-+1<0,

即+y1y2-[(y1+y2)2-2y1y2]+1<0.

将代入整理得m2-6m+1<4t2.

因为对任意实数t,4t2的最小值为0

所以不等式对于一切t成立等价于m2-6m+1<0,

即3-20),则FD的中点为.

因为|FA|=|FD|,

由抛物线的定义知3+,

解得t=3+p或t=-3(舍去).

由=3,解得p=2.

所以抛物线C的方程为y2=4x.

(2)由(1)知F(1,0).

设A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),

因为|FA|=|FD|,

则|xD-1|=x0+1.

由xD>0得xD=x0+2,

故D(x0+2,0).

故直线AB的斜率kAB=-.

因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,

代入抛物线方程得y2+y-=0,

由题意Δ==0,

得b=-.

设E(xE,yE),

则yE=-,xE=.

当≠4时,kAE==-,

可得直线AE的方程为y-y0=(x-x0),

由=4x0,整理可得y=(x-1),

直线AE恒过点F(1,0).

当=4时,直线AE的方程为x=1,过点F(1,0).

所以直线AE过定点F(1,0).

由知直线AE过焦点F(1,0),

所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.

设直线AE的方程为x=my+1,

因为点A(x0,y0)在直线AE上,

故m=.

设B(x1,y1),

直线AB的方程为y-y0=-(x-x0),由于y0≠0,

可得x=-y+2+x0,

代入抛物线方程得y2+y-8-4x0=0.

所以y0+y1=-,

可求得y1=-y0-,

x1=+x0+4.

所以点B到直线AE的距离为

d=

==4.

则ABE的面积S=×4≥16,

当且仅当=x0,即x0=1时等号成立.

所以ABE的面积的最小值为16.

更多精彩资讯请关注查字典资讯网,我们将持续为您更新最新资讯!

上一篇:2016年高考物理备考专项练习:人造卫星 下一篇:2016年高考英语阅读理解专项练习题(1...